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Abstract

This self-contained communication summarizes, simplifies and extend some the-
orems we have previously demonstrated. If one of its main results is that at least
almost all orbits of the Collatz map attain bounded values, the methodology
of algebraic geometry it employs, that is, the studying of how the complete binary,
ternary and quaternary trees intersect each other over N is its most important contri-
bution as not only does it yield very useful results but also can it be applied to a large
diversity of other cases of discrete mathematics and beyond. Defining S(a) = 2a+1
and V (a) = 4a+ 1 we first establish a founding lemma that for any even number x
the orbits of V (x) and S(V (x)) merge and so do Sk(V (x)) and Sk+1(V (x)) for any
even k. For any odd number y the orbits of S(V (y)) and S2(V (x)) merge and so
do Sk(V (x)) and Sk+1(V (x)) for any odd k. An algorithm connecting all of those
merging pairs with each other will therefore solve the Syracuse problem. We here
demonstrate the existence of an algorithm finitely connecting at least almost all of
these pairs all the way back to the pair {1;3}, along with a few corollaries that are
worthy of interest to manifest a final proof of the Collatz conjecture.

1 Introduction

This communication introduces a simple yet powerful methodology to study the Collatz
orbits, essentially consisting of analysing each natural number with respect to its position
on the complete binary, ternary and quaternary trees over N, that is, trees defined respec-
tively by the infinite iteration of all the possible compositions of the following operations
on number 1:

• {·2; ·2 + 1} binary tree

• {·3; ·3 + 1; ·3 + 2} ternary tree
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• {·4; ·4 + 1; ·4 + 2; ·4 + 3} quaternary tree

...the binary tree thus generating an infinity of branches that has the cardinality of R (and
the quaternary one, the cardinality of ℘(R))1. For any number, defining its neighbour-
hood in terms of which branch (and of which length) it belongs to on each of these trees
provides a framework to demonstrate very fruitful results that could actually be applied
beyond the Syracuse problem, and more importantly, beyond discrete mathematics, for
example in the study of the Julia sets of holomorphic functions.

2 Definitions

Note 2.1. For all intent and purpose we will define Syr(x) as ”the next odd number
in the forward Collatz orbit of x”.

Whenever two numbers a and b have a common number in their orbit, we will also note
a ≡ b, a relation that is self-evidently transitive:

∀{a; b; c}

a ≡ b ∧ b ≡ c → a ≡ c

Definition 2.1. Action S
The Action S (”Successor”) on any natural number a is defined as S(a) = 2a+ 1

Definition 2.2. Action V
The Action V (”Vertical”) on any natural number a is defined as V (a) = 4a+ 1

Definition 2.3. Action G
The Action G (”Glacial”) on any natural number a is defined as G(a) = 2a− 1
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1Interestingly enough, it is because of considerations regarding the cardinality of the set of all branches
of the complete ternary tree over N that the founding observations leading to this communication were
made, initially over considerations regarding Feferman (2011)
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Figure 1. Representation of operations V, G and S on all odd numbers from 1 to 31.
The set 2N + 1 is thus endowed with three unary operations without a general inverse
and that are non commutative with G ◦S = V . Whenever we will mention the inverse of
these operations, it will be assuming they exist on N.

Definition 2.4. Rank
The rank of an odd number is the number of consecutive end digits 1 in its base 2
representation, or equivalently, the number of times the action S has been applied to
generate it (S is then defined on N), and any number o of rank 1 can be written S(e)
where e is even.

Definition 2.5. Odd branch
An odd branch is the infinite set of numbers {a;S(a);S2(a) . . .} where a is of rank 1.

Definition 2.6. Glacis
The glacis of bottom b is the infinite set of numbers {G(V (b));G2(V (b)) . . .} where b is
any odd number.

Definition 2.7. Root
The root r of any odd branch is its only number of rank 1.

Definition 2.8. Determinant
The determinant d of any odd branch of root r is G−1(r). Any number of rank 1 admits
a determinant.

Definition 2.9. Vertical, Verticality
A number a of rank 1 always admits a V −1(a) which is called its Vertical. To avoid any
confusion, when ambiguous, we will call V (a) the V + of a. If the vertical of a is odd, we
will call it Vertical odd, otherwise, it is Vertical even.
The Verticality of a number a of rank 1 is the vector

[
n
b

]
where b is either an even

number or a number of rank 2 or more, and a = V n(b) We will say that a has a verticality
of n and of bottom b.

Definition 2.10. Successal, Successality
A number a of rank 2 or more will be called Successal, and its successality is equal to
its rank.

Definition 2.11. Glaciality
In a glacis of bottom b, the glaciality of S(b) is set to −1, that of V(b) is set to 0 and
that of Gn(V (b)) is set to n. To aggregate the information of the bottom b of its glacis
to any glacial number (that is, a number that can be written as G(x) where x is odd), its

glaciality will be the vector
[
n
b

]

3 Essential lemmas

Lemma 3.1. If a = V (b) and b is odd, then Syr(a) = (Syr(b)) and we will note a ≡ b
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Proof. If a is written 4b+ 1 then 3a+ 1 = 12b+ 4 = 4(3b+ 1) therefore a ≡ b

This lemma is quite trivial and therefore in no way original, but it is an essential building
block nonetheless.

Lemma 3.2. Let a be a number of rank 1 and of determinant d, then Syr(S(a)) = G(3·d)
Let a be a number of rank n in an odd branch of determinant d, then Syrn−1(a) =
G(3n−1 · d)

Proof. If a is of determinant d then a = 2d− 1, and of course d is odd.

S(a) = 4d− 1

3S(a)+1
2 = 12d−2

2 = 6d− 1 = G(3 · d)

Syr(S(a)) = G(3 · d)

Now let’s generalize to the n

Note that if Syr(S(a)) can be written G(3 · d) it is also of rank 1, whereas S(a) was of
rank 2, therefore, the action of Syracuse has made it lose one rank.

All we thus have to prove now is that Syr(S2(a)) = S(Syr(S(a))) under those conditions

3·(S2(a))+1
2 = 6a+ 5

S(Syr(S(a))) = S(3a+ 2) = 6a+ 5 = Syr(S2(a))

Corollary 3.3. If a is of rank n > 1, Syr(a) is of rank n-1, and Syr(S(a)) = S(Syr(a))

Note 3.4. The Syracuse action over an odd number is equivalent to adding 1 to it, then
the half of the result, then −1. How many times one can add an half to the number +1
directly depends on the length of the immediate even branch of the binary tree that is to
its right.

Let us take Mersenne numbers for example, that are defined as 2n − 1. One can Syracuse
them consecutively a number of time that is proportionate to their rank-1, indeed, 31,
which is written 11111 is of rank 5, because 32 = 25 so if you repeat the action ”add to
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the number the half of itself” which is equivalent to a multiplication by 3
2 this will yield

an even result exactly four consecutive times.

Thus, any ascending orbit in Syracuse concerns only numbers a of rank 2 or more, and
is defined by

(a+ 1) · ( 32 )
rank−1 − 1

because the rank is strictly equivalent to the length of the next even branch of the binary
tree on the right of the number, defining how many consecutive times the action · 32 will
yield an even number.

Lemma 3.5. Let a be an odd number of rank 1 that is vertical even, then 3a is successal,
and 9a is vertical even.
Let a be an odd number of rank 1 that is vertical odd, then 3a is successal, and 9a is
vertical odd.

Proof. If a is vertical even it can be written 8k + 1 ∀k

3a = 24k + 3 and this number admits an S−1 that is

12k + 1, which is an odd number, therefore 3a is Successal

9a = 72k + 9 and this number admits a V −1 that is

18k + 2, an even number indeed.

Now if a is vertical odd, it can be written 8k + 5 ∀k

3a = 24k + 15 and 9a = 72k + 45, 3a admits an S−1 and 9a admits a V −1, respectively

12k + 7 and 18k + 11 and they are both odd.

Theorem 3.6. (regular quaternary equivalence)
Let a be a number that is vertical even, then (a) ≡ S(a) and Sk(a) ≡ Sk+1(a) for any
even k. Let a be a number that is vertical odd, then S(a) ≡ S2(a) and Sk(a) ≡ Sk+1(a)
for any odd k.

We will call these relations merging alternate pairs of odd branches ”regular quaternary
equivalences” or qe.

Proof. If a is vertical even then it can be written as G(d) where d is necessarily vertical
(odd or even)

so by lemma 3.5 we have that 3d is successal and by lemma 3.2 we have Syr(S(a)) = G(3d)
so it is necessarily vertical odd (since 3d is successal) so Syr(a) = V −1(Syr(S(a)) and
therefore a ≡ S(a)
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This behavior we can now generalize to the n, because if a is vertical even and of de-
terminant d, then the lemmas we used also provide that Syrn(Sn(a)) = G(3n · d) and
therefore Syrn(Sn(a)) will be vertical even for any even n because 3n · d will be vertical
something (even or odd, depending on what the determinant was) for any even n.

Now if a is vertical odd it can be written G(d) and d is necessarily successal because
G ◦ S = V .

Thus 3d is vertical (even or odd) and therefore Syr(S(a)) = G(3d) is vertical even.

This qe theorem is a more elaborate, and now very useful building block of our demon-
stration, because it allows to place a relation of equivalence between every other pair of
any odd branch of the binary tree, up to infinity. It is also based on the characteristics
of increasing phases of the Syracuse orbits: any number of rank n is finitely turned into
a number that has a vertical, which is either odd or even.

We should now interest ourselves with the decreasing phases of the Syracuse orbits 2, and
they only concern the glacis.

Theorem 3.7. (glacial decreasing)

Let a be a vertical even number with a glaciality of
[
n
b

]
where n is even, then a ≡ 3

n
2 (b)

Let a be a vertical even number with a glaciality of
[
m
b

]
where m is odd, then a ≡

S(3
m+1

2 (b))

Proof. if a is of glaciality
[
n
b

]
then by definition a = 2n+2b+ 1.

Then 3 · a+ 1 = 3(2n+2b+ 1) + 1) = 2n+2 · (3b) + 4.

As this expression can be divided by no more than 4, we have

Syr(a) = 2n3b+ 1, therefore the glaciality of Syr(a) is[
n− 2
3b

]
Note that if n = 2 then V −(Syr(a)) = V −(22 · (3a) + 1) = 22 · 1

4 · (3b) = 3b which is of
course an odd number. Therefore Syr(a) is vertical odd and V −(Syr(a)) = 3b thus we
have proven that a ≡ 3b.

2remember that we are still only considering odd numbers when we write ”decreasing phases”, and
still defining Syr(a) as ”the next odd in the orbit of a”
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If n = 1 then a = 23 · b + 1 so 3(a + 1) = 23 · 3b + 4 therefore Syr(a) = S(3b) and thus
a ≡ S(3b).

From this we can generalise the progression of glacis numbers. Let b be any odd number,
thus defining a glacios bottom. All ”Variety S” numbers of its glacis are written V (b ·
22k−1) or S(b ·22k) = 22k+1 · b+1 and all ”Variety V” numbers of its glacis are written
V (b · 4k) or equivalently S(b · 22k+1) = 4k+1 · b + 1. Any glacis number g of order 2k or
2k − 1 may be thus reduced to a glaciality of 0 or −1 by the following transformation:

(g − 1) ·
(

3
4

)k

+ 1 therefore we do have indeed that,

• for Variety S numbers : 22k+1 · b ·
(

3
4

)k

+ 1 = 2b · 3k + 1 = S(b · 3k)

• for Variety V numbers : 4 · 4k · b ·
(

3
4

)k

+ 1 = 4b · 3k + 1 = V (b · 3k)

As the obtaining of these equalities will fit any odd number b, we have that any glacis
number of glaciality 2k will be finitely mapped to 4b · 3k + 1 = V (b · 3k) and that any
glacis number of order 2k − 1 will be mapped to 2b · 3k + 1 = S(b · 3k).. Any glacis
number merges either directly with a power of three of its bottom or with
the successor of it.

4 General description of the Syracuse dynamic

The qe theorem allows to place an infinite amount of equivalences along the binary tree
that are the result of quaternary properties.

1 2

3 4

5 6 7 8

14 15 16131211109

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Figure 2. A representation of the intersection of the binary and the quaternary trees:
as only the quaternary operation ·4+1 really matters to the representation, we have just
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warped the binary tree so that V(a) is indeed Vertical to a. We have also not connected
the rank 1 numbers to the even ones of which they are the successors so as to make
glacis more easily visible. The bold black lines indicate qe equivalences and vertical
equivalences, and so whenever numbers are joined by a connective series of those lines,
their Collatz orbits merge. Connecting all of those equivalences together completely solves
the Syracuse problem, and as we will see in the next section, this endeavour requires the
introduction of a third dimension: that of the ternary representation of any number.

4.1 Ascending phases

The orbit of an odd number can only increase if it is of rank 2 or more. Odd branch
numbers of rank n > 2 ascend with the progression +1 · 3

2

n−1 − 1 and this allows to
compress their orbit to the next glacis.

More particularly though, if a pair is not connected by the qe equivalence, it is be-
cause the rank 1 reduction of its smallest number by Syracuse is vertical
odd. When we have a pair {a;S(a)} where a is vertical odd, what happens is that a is
mapped to Syr(V −1(a)) and S(a) is mapped to the glacis of bottom Syr(V −1(a)) and
this phenomenon, by which a pair of numbers that were related on the binary tree become
separated we call an Avalanche. Avalanches account for absolutely all of the chaoticity of
the Syracuse orbits, and whoever can perfectly predict their occurence and consequences
has cracked all of the Syracuse orbits. Needless to say, this communication doesn’t have
this ambition.

An example of Avalanche can be understood on figure 2 by observing the pair {3; 7} of
which the first Syracuse image is {5; 11} where 5 indeed is vertical odd. The avalanche
is that 5 is mapped to the image of 1, which is 1, and 11 is mapped to 17, which is in
the glacis of bottom 1. This happens to all such pairs, which we have called ”buds” in a
previous work.

The alacrious reader will not fail to notice that 17 is precisely a glacis number of Variety
V , and this is not happening by chance: if a vertical odd number a is the finite vertical
of an even number, then S(a) will be mapped as a variety V in the next glacis, and
proportionally as high as a was vertical, and if the bottom of its verticality is odd, then
S(a) will be mapped as a variety S. The easy reason for which it is so will be left for the
reader to grasp, as we do not use it in the other demonstrations of this piece.

We have also noted that any power of 9 of a vertical number is either of the series ”vertical
odd” or the series ”vertical even” and these two are parallel: one cannot obtain a vertical
odd number by applying any power of nine to a vertical even one. Thus, the destiny
of branches the determinant of which falls within the ”vertical odd” or ”vertical even”
series is quite different, and this level of precision can also help understand the Syracuse
dynamic better. Still, we shan’t use it further in this communication, even though it is
more significant than a simple curiosity.
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4.2 Descending phases

Any odd number can only decrease in Syr if it is of rank 1, and then it intersects either
the Successor or the Vertical of a power of 3 of the bottom of its glacis. Note that in so
doing, it always encounters the consequences of another qe on the branch it meets: either
the power of three of the bottom of the glacis can be proven to merge with its successor,
either it is vertical odd or it is its predecessor that is merging with it.

Here too, powers of 3 of the bottom of the glacis, just as being the case with odd branch
determinants had useful implications to elaborate more advanced theorems, can either be
of the ”vertical odd” or ”vertical even” sequences.

Numbers of even glaciality n decrease following the dynamic −1 · ( 34 )
n
2 + 1 and those of

odd glaciality m, −1 · ( 34 )
m+1

2 + 1.

Thus, whenever one can prove that an odd number merges with its triple, one
proves that it merges with its first number of even glaciality

Also, whenever one can prove that an odd number merges with the successor
of its triple, one proves that it merges with its first number of odd glaciality.

We cannot stress enough the importance of this pair of results.

5 Using the ternary tree to connect the quaternary
equivalences

5.1 Definitions

In the previous sections we have mostly identified numbers by their position in the com-
plete binary and quaternary trees over N. Using statements of the kind ”a is vertical
even” is a typical example of crossing binary and quaternary properties to identify spe-
cific characteristics of a number. We will now expand this methodology by adding the
ternary tree, which elements we will identify with the following definitions:

Definition 5.1. Ternary, Ternarity
A number b is ternary or of type B, if it can be divided by 3. Its ternarity is the
total number of times it can be divided by 3, to which we will add the information of
the non-ternary number resulting from this finite operation, thus the full ternarity of any
ternary number that can be written 3n · x where x is non ternary is

[
n
x

]
For all intent

and purpose, when we will refer to just the ”ternarity” of a B type number (as opposed
to ”full ternarity”) we will just be meaning n alone.
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Definition 5.2. 1-ternary, 1-ternarity
A number c is 1-ternary or of type C, if its base 3 representation ends with digit 1. The
number of times one can remove a consecutive end digit 1 (we call this operation C−1) is
its 1-ternarity, to which we add the information of the number resulting from it. Thus,
a number c that can be written x 1 . . . 1︸ ︷︷ ︸

n

in base 3 has a 1-ternarity of
[
n
x

]

Definition 5.3. 2-ternary, 2-ternarity
A number a is 2-ternary or of type A, if its base 3 representation ends with digit 2.
The number of consecutive times one can remove an end digit 2 (we call this operation
A−1) is its 2-ternarity, to which we add the number resulting from it. Thus, a number

a that can be written x 2 . . . 2︸ ︷︷ ︸
n

in base 3 has a 2-ternarity of
[
n
x

]

Definition 5.4. ”up”, ”down”

A number is called ”up” if its qe makes it merge with its successor. If B ≡ S(B) we call
it a Bup and respectively for A and C, Aup and Cup. If B ≡ S(B), as we necessarily
have that S(B) is of type C, we will call this C ”down” or Cdown. If a number is vertical
odd, it is ”down”, if it is vertical even, it is ”up”.

1

3

5 7

1513119

17 19 21 23 25 27 29 31

33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

65 67 12769 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125

Figure 3. All odd numbers from 20 to 27. Type A are circled in teal, B in gold and C in
purple. Numbers of a ternarity of 2 or more (numbers that can be divided by 9, that is)
are also colored in gold. To explain again the previous definitions: 27 is a Bup and 63 is
a Bdown for example. Any glacis number of glaciality above 0 is ”up”: 17 is an Aup for
example, and 19 a Cdown. Though exotic, these names are absolutely essential to the
results we obtain, and their very use is a pure result of our methodology: the ”up” and
”down” properties come from the study of the intersections of the binary and quaternary
trees, and the A,B,C ones, from the ternary.
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5.2 Golden Automaton

We shall now define an algorithm that can mend together infinitely many quaternary
equivalences, and actually at least almost all of them. This algorithm we call the
Golden Automaton or GA.

1. Start from the equivalence 1 ≡ 3 ≡ 5

2. Whenever a new type B number is found in the network, divide it by 3, and always
prioritize the Bups

for the first round, the only B is 3, so the GA notes that 1 ≡ 3

3. project the equivalences in the corresponding glacis
at round 1, there is only one equivalence: having that 1 merges with its triple

means it also merges with its first glacis number of the V Variety, thus giving 17 ≡ 1

4. whenever a new type A glacis number is found in the network, apply A−1 up to a
non A type3, which is added to the network. If this generates an equivalence of the
type B ≡ S(B), prioritize it.

at round 1, this gives 17 ≡ 7. Also by the qe 7 ≡ S(15) and 15 is of type B,
but not a Bup. so it will not be prioritized by the GA. Still, we now have 3 ≡ S(3),
which will be put to use in the glacis of bottom 1

5. project the equivalence in the corresponding glacis
3 ≡ S(3) → 1 ≡ 9. 9 is ternary, and being a glacis number, it is a Bup, so it

will now prove two glacis equivalences together, namely those of 49 and 35 (each of
them bringing two Bdowns) and equivalently, 65 and 33.

6. After checking the Aups and prioritizing those of the highest 2-ternarity (they are
easy to spot, as they can be written G(B) where B is of high ternarity) check all
the Bdowns added to the network, including the ones that are the verticals of an
A type. Always prioritize the lowest numbers in any case.

7. repeat.

1

3

5 7

1513119

17 19 21 23 25 27 29 31

33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

65 67 12769 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125

1 ≡
3⇒

1 ≡
17

1 ≡ 17 ⇒
3 ≡ 7

3 ≡ 7 ⇒ 5 ≡ 9

1 ≡
9

1 ≡
9

3 ≡
9

9 ≡
19

3
≡
7

11
≡

33

45
≡

89

19
≡

39

3This operation can only be finitely repeated of course, and is decreasing
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Figure 4. The golden branches on this figure are only a subset (and precisely: the Bup
series after exploiting 3) of the equivalences the GA proves to reach them: assuming
number 3 already grafted to the network (since we start from 1 ≡ 3 ≡ 5), they are the
ones generated by only considering the Bups, and not the (many) more opportunities
offered by connecting Bdowns, which are of lesser immediate interest but of much higher
frequency and actually always yield either a new Aup or a new Bup to graft as well.

Theorem 5.1. The Golden Automaton can neither stop nor loop.

Proof. The moment a Bup is brought to its growing equivalence network, the GA can
finitely prove that a number of either type A or C merges with two consecutive glacis
numbers. Also, if the Bup is of a ternarity above 1, it will additionally prove that two
glacial type C merge with a type B bottom, for example 1 ≡ 9 means 65 ≡ 33 ≡ 1 but
also 49 ≡ 25 ≡ 3 because 9 is of ternarity 2. Exploiting the first Bup, there will always
be an Aup and Bup that will be freshly grafted to the equivalence network, either in the
descending glacis order (B;A) if the bottom is of type C, and (A;B) if it is of type A.
The more ternary the Bup, the higher-reaching the equivalence. That a Bup be brought
in the network guarantees a full new equivalence of the type x ≡ 3kx ≡ S(3k) which will
always reconnect a new Aup and a new Bup. Thus, the grafting of a new Bup to the
network always implies the grafting of another one. So it cannot stop.

Can it loop now? Any Bup the GA gets, it does by either operations G ◦G ◦ V or G ◦ V ,
and then it will also get an Aup in the process. The equivalence it obtains is then that Bup

3

merges both with G ◦G ◦ V (Bup
3 ) and G ◦ V (Bup

3 ) this progression is strictly increasing,
precisely because glacis numbers have a strictly decreasing progression in Syracuse.

Theorem 5.2. The Golden Automaton connects at least almost all orbits.

Proof. So we have an algorithm that never stops, cannot loop and that recoups an ex-
ponentially growing diversity of numbers within the ternary tree over N. Also, all the
ascending Syracuse orbits lead to numbers that can be written G(B), and all the de-
scending ones, to numbers that are either B or S(B). Remember too, that, regarding the
title of this communication, whenever an orbit is grafted by the GA, it is never almost
bounded, but bounded, period.

Besides, we have not at all fully exploited all the Bdown the GA grafts to its equivalence
network, and which new equivalences they also prove. Even though each of them is
initially less powerful than the grafting a Bup (ie. in its first round of exploitation, a
freshly grafted Bdown either offers the grafting of a new Aup or that of a new Bup) each
round of running the GA brings proportionally much more of them, and this for simple
reasons kind

• whenever the GA grafts a number of glaciality above 2, it also grafts its next glacial
image, which is necessarily of type C. For example, as we have already seen, grafting
65 and 33 implies the grafting of the type C 49 and 25 (their next glacial images)
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and therefore that of the Bdowns 99 and 51 which are their successors, which which
they merge by virtue of the qe.

• whenever the GA grafts a type A number, each application of A−1 produces either
another A type which vertical is then a Bdown, or if it is of a 2-ternarity of 1,
directly either a Cup or a Bup. As any glacial type A can be written G(B), the
ternarity of its determinant gives the number of times A−1 can be applied (and so
how many new Bdowns it gives, minus one). For example: 17 being the glacial
image of 7, and G(9), A−1 can be applied only twice to it, so only one type A
number is also grafted (11 that is) thus grafting V (11) which is 45.

Thus, Bdown that is grafted to the ternary tree (along with its third) always initiates
the adding at least of an endless other series of Bdowns and of Bups too, this also, for
elementary algebraic reasons:

• Any freshly grafted Bdown allows the grafting of either a glacis A or a glacis B
depending on whether this Bdown can be written 3n · c (then it grafts an Aup) or
3n · a (then it grafts a Bup).

• if an Aup is thus grafted, it finitely connects either a Bup or a Cup and therefore a
Bdown (as in what happens when connecting the pair 7 ≡ 15), because this Aup, in
base 3, can only be written either b 2 . . . 2︸ ︷︷ ︸

n

(in which case it finitely maps to a Bup)

or c 2 . . . 2︸ ︷︷ ︸
n

(in which case it finitely maps to a Cup). Thus the play again through

the Bdown series is guaranteed for the Golden Automaton.

• if it’s a Bup, it now grafts both a glacis A and a glacis B, the play again is also
guaranteed.

Thus the GA does not stop, both through the grafting series that started with the first
Bup (namely 9, then 33) but also to the one that started through the many Bdowns
after it (15, 21, 45...). The existence of the qe also proves that the only problems that
need to be solved to fully demonstrate that all Collatz orbits are bounded are the A-
A avalanches, that is, the demonstration that all glacis numbers of type A merge with
their glacis Bottom, which would allow to prove that all the numbers of any odd branch
merge. The Golden Automaton not only guarantees that an infinite amount of those A-A
avalanches are solved but also that, for the progression of it to 3n, when n goes to infinity,
at least almost all are solved.
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Figure 5. Note that the development of the Golden Automaton mimics the
one of the famous ”Collatz Seaweed”, which is of course no accident. This more
complete description of the Automaton, grafting the qe together as it progresses from
1 ≡ 3 ≡ 5, goes all the way to grafting 127 and 31. Each branch indicates which number
generates it, for example 9 is grafted to 5 because 7 is grafted to 3, and 9 being a Bup it
grafts 33 and 65. Never before has such a large proportion of any odd numbers4

up to to 2n + 5 been demonstrated to finitely merge with 1, and with an
algorithm that has of course nothing to do with the brute force computation
of each orbits, in that not only are each of its steps finite and predictable, but
the demonstrating that all numbers from 20 to 2n + 5 converge has not the
algorithmic complexity of calculating each single orbits. In this figure are shown
the grafting of 31 and 127, thus, even though all the consequences of this grafting are not
represented, proving the merging of all numbers up to 261.

The most problematic numbers at any stage 2n remain the Mersenne numbers
and of course, the ones leading to them, yet the Golden Automaton grafts them
very easily. All the problematic Mersennes are Cups like 31, 127 and the like. Since the
determinant of the Mersenne branch is 1, at any level of the binary tree, their first glacial
image will always be written G(3n). For example, the first forward glacial image of 31
is G(81) = 161. This is the reason 31, for example, cannot cycle when reaching its first
glacis: being of high rank, it has to be written as the glacial of a proportionately high
power of 3 of its determinant (1), which just can never be a vertical of 1 (no power of 3
of 1 can be written V n(1)). Also, since multiplying a number of a high verticality by 3
always gives a number of proportionate successality, it means that the precursors of the
Mersenne Cups will always be written G(V n(1)), for example the precursor of 7 is 9 and
that of 31 is G(21) = 41. Logically, the precursor of 127 is G(85) = 169, that of 511 is

4because it is easy to prove that if all numbers up to 2n − 1 converge then so do all odds until at least
2n + 5. Indeed, 2n + 1 being glacial, always have a smaller number than 2n − 1 in its orbit, from n=4
onward, 2n + 3 is always the successal of a glacial and 2n + 5 is always a vertical odd number
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G(341) = 611.

Note that it is equally easy to demonstrate that the precursors of the ”Anti-Mersenne” of
type A, that is, the type A numbers that can be written 2n + 1 or equivalently the type
A numbers of the glacis of bottom 1, can always be written S(V n(1)): 11 leads to 17, 43
leads to 65, 171 leads to 257 etc.

As 729 = 36 is of Variety S, G(729) ≡ 127 is of Variety V, which makes it much easier
to solve as it brings its solving to the problem of grafting 91 · 3 = 273, which is itself
of Variety V. This is why 127 is proven to merge with 15 before we even prove that 31
converges as well.

31 indeed is a much harder number to graft abstractly because its first glacial image is
of Variety S, meaning it requires the grafting of many more ternary numbers and their
successors to achieve its grafting, but it works nevertheless. It is easy to prove that if
the first glacial image of 31 is of Variety S, then that of 127 is of Variety V, but that of
511 will be of variety S too. Hence: that 31 is ”long” to solve means 127 is ”short”, and
thus 511 is ”long” but 2047 is ”short”. 31 was ”long” also because 7 was ”short”: 9 is of
variety S, hence the first glacial image of 7 is of variety V, and easy to graft back to 1.

One can very easily infer from Figure 5 that with the infinity of avalanches the Golden
Automaton solves, including those of the dreaded Mersenne numbers, at least almost
all orbits attain, not almost bounded but bounded values, period. The emphasis on at
least means it could be proven, through more abstract methods, that no Collatz Orbit
can escape a finite development of the Golden Automaton, a statement this article will
leave as a conjecture for now.

Conjecture 5.3. For any Collatz orbit there is an arbitrarily long, but finite, development
of the Golden Automaton that grafts it back to 1.

6 Conclusion

Studying the intersections of the complete binary, quaternary and ternary trees over N
yields simple yet very powerful results regarding the Syracuse dynamic. As we have
already pointed out in Aberkane (2020) this methodology could be extended to other
discrete dynamic systems, diophantine problems and even to problems involving non-
discrete environments.

Does the Golden Automaton’s exponential grafting of new equivalences allow to demon-
strate that actually all the Collatz orbits are finitely grafted to it? This will be left to
another document although the curious reader may very well establish their own rigorous
demonstration in that sense already.5

5The author encourages the ever alacrious reader to verify it by a method similar to Heule et al.
(2016)’s ”cube and conquer”.
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