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Abstract

This self-contained communication details a complete solution of the Syracuse
problem, based only on a theory, and the fundamental theorems it provided, that
we published in 2017, but that are summarised here nevertheless. In a further ex-
plainer of the latter paper, which we published in 2020 for the interest of a group of
non-experts, we gave a first complete algorithmic definition of a so-called ”Golden
Automaton”, which had already been anticipated in our 2017 article and the struc-
ture of which rested strictly on this article’s results. This updated publication is
provided with an addendum formally demonstrating that the Golden Automaton’s
quiver can intersect any Syracuse orbit in finite time, thus demonstrating that any
natural number finitely converges to 1 in the 3x+1 problem. The methodology of
this final demonstration consists of identifying a ”Syracuse determinant” that is,
a collection of numbers that any diverging orbit must develop within, and demon-
strating that the Golden Automaton’s footprint on this determinant cannot allow
the existence of any orbit it does not finitely intersect itself.

1 Introduction

In an open-access publication of 2017, we introduced a simple yet powerful methodology
to study the Collatz orbits, essentially consisting of analysing each natural number with
respect to its position on the complete binary, ternary and quaternary trees over N, that
is, trees defined respectively by the infinite iteration of all the possible compositions of
the following linear operations on number 1:

• {·2; ·2 + 1} binary tree

• {·3; ·3 + 1; ·3 + 2} ternary tree
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• {·4; ·4 + 1; ·4 + 2; ·4 + 3} quaternary tree

...the binary tree thus generating an infinity of branches that has the cardinality of R
(and the quaternary one, the cardinality of ℘(R))1. For any number, defining its neigh-
bourhood in terms of which branch (and of which length) it belongs to on each of these
trees provides a framework to demonstrate very fruitful results that could actually be ap-
plied beyond the Syracuse problem, and more importantly, beyond discrete mathematics,
for example in the study of the Julia sets of holomorphic functions. We have called the
intersection of the binary, ternary and quaternary trees over N the ”Romanesco (2,3,4)”

2 Definitions

Note 2.1. For all intent and purpose we will define Syr(x) as ”the next odd number
in the forward Collatz orbit of x”.

Whenever two numbers a and b have a common number in their orbit, we will also note
a ≡ b, a relation that is self-evidently transitive:

∀{a; b; c}

a ≡ b ∧ b ≡ c → a ≡ c

Definition 2.1. Action S
The Action S (”Successor”) on any natural number a is defined as S(a) = 2a+ 1

Definition 2.2. Action V
The Action V (”Vertical”) on any natural number a is defined as V (a) = 4a+ 1

Definition 2.3. Action G
The Action G (”Glacial”) on any natural number a is defined as G(a) = 2a− 1
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1Interestingly enough, it is because of considerations regarding the cardinality of the set of all branches
of the complete ternary tree over N that the founding observations leading to our work on Syracuse were
made, initially over considerations regarding Feferman (2011)
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Figure 1. Representation of operations V, G and S on all odd numbers from 1 to 31.
The set 2N + 1 is thus endowed with three unary operations without a general inverse
and that are non commutative with G ◦S = V . Whenever we will mention the inverse of
these operations, it will be assuming they exist on N.

Definition 2.4. Rank
The rank of an odd number is the number of consecutive end digits 1 in its base 2
representation, or equivalently, the number of times the action S has been applied to
generate it (S is then defined on N), and any number o of rank 1 can be written S(e)
where e is even.

Definition 2.5. Odd branch
An odd branch is the infinite set of numbers {a;S(a);S2(a) . . .} where a is of rank 1.

Definition 2.6. Glacis
The glacis of bottom b is the infinite set of numbers {G(V (b));G2(V (b)) . . .} where b is
any odd number.

Definition 2.7. Root
The root r of any odd branch is its only number of rank 1.

Definition 2.8. Determinant
The determinant d of any odd branch of root r is G−1(r). Any number of rank 1 admits
a determinant.

Definition 2.9. Vertical, Verticality
A number a of rank 1 always admits a V −1(a) which is called its Vertical. To avoid any
confusion, when ambiguous, we will call V (a) the V + of a. If the vertical of a is odd, we
will call it Vertical odd, otherwise, it is Vertical even.
The Verticality of a number a of rank 1 is the vector

[
n
b

]
where b is either an even

number or a number of rank 2 or more, and a = V n(b) We will say that a has a verticality
of n and of bottom b.

Definition 2.10. Successal, Successality
A number a of rank 2 or more will be called Successal, and its successality is equal to
its rank.

Definition 2.11. Glaciality
In a glacis of bottom b, the glaciality of S(b) is set to −1, that of V(b) is set to 0 and
that of Gn(V (b)) is set to n. To aggregate the information of the bottom b of its glacis
to any glacial number (that is, a number that can be written as G(x) where x is odd), its

glaciality will be the vector
[
n
b

]

3 Essential lemmas

Lemma 3.1. If a = V (b) and b is odd, then Syr(a) = (Syr(b)) and we will note a ≡ b
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Proof. If a is written 4b+ 1 then 3a+ 1 = 12b+ 4 = 4(3b+ 1) therefore a ≡ b

This lemma is quite trivial and therefore in no way original, but it is an essential building
block nonetheless.

Lemma 3.2. Let a be a number of rank 1 and of determinant d, then Syr(S(a)) = G(3·d)
Let a be a number of rank n in an odd branch of determinant d, then Syrn−1(a) =
G(3n−1 · d)

Proof. If a is of determinant d then a = 2d− 1, and of course d is odd.

S(a) = 4d− 1

3S(a)+1
2 = 12d−2

2 = 6d− 1 = G(3 · d)

Syr(S(a)) = G(3 · d)

Now let’s generalize to the n

Note that if Syr(S(a)) can be written G(3 · d) it is also of rank 1, whereas S(a) was of
rank 2, therefore, the action of Syracuse has made it lose one rank.

All we thus have to prove now is that Syr(S2(a)) = S(Syr(S(a))) under those conditions

3·(S2(a))+1
2 = 6a+ 5

S(Syr(S(a))) = S(3a+ 2) = 6a+ 5 = Syr(S2(a))

Corollary 3.3. If a is of rank n > 1, Syr(a) is of rank n-1, and Syr(S(a)) = S(Syr(a))

Note 3.4. The Syracuse action over an odd number is equivalent to adding 1 to it, then
the half of the result, then −1. How many times one can add an half to the number +1
directly depends on the length of the immediate even branch of the binary tree that is to
its right.

Let us take Mersenne numbers for example, that are defined as 2n − 1. One can Syracuse
them consecutively a number of time that is proportionate to their rank-1, indeed, 31,
which is written 11111 is of rank 5, because 32 = 25 so if you repeat the action ”add to
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the number the half of itself” which is equivalent to a multiplication by 3
2 this will yield

an even result exactly four consecutive times.

Thus, any ascending orbit in Syracuse concerns only numbers a of rank 2 or more, and
is defined by

(a+ 1) · ( 32 )
rank−1 − 1

because the rank is strictly equivalent to the length of the next even branch of the binary
tree on the right of the number, defining how many consecutive times the action · 32 will
yield an even number.

Lemma 3.5. Let a be an odd number of rank 1 that is vertical even, then 3a is successal,
and 9a is vertical even.
Let a be an odd number of rank 1 that is vertical odd, then 3a is successal, and 9a is
vertical odd.

Proof. If a is vertical even it can be written 8k + 1 ∀k

3a = 24k + 3 and this number admits an S−1 that is

12k + 1, which is an odd number, therefore 3a is Successal

9a = 72k + 9 and this number admits a V −1 that is

18k + 2, an even number indeed.

Now if a is vertical odd, it can be written 8k + 5 ∀k

3a = 24k + 15 and 9a = 72k + 45, 3a admits an S−1 and 9a admits a V −1, respectively

12k + 7 and 18k + 11 and they are both odd.

Theorem 3.6. (regular quaternary equivalence)
Let a be a number that is vertical even, then (a) ≡ S(a) and Sk(a) ≡ Sk+1(a) for any
even k. Let a be a number that is vertical odd, then S(a) ≡ S2(a) and Sk(a) ≡ Sk+1(a)
for any odd k.

We will call these relations merging alternate pairs of odd branches ”regular quaternary
equivalences” or qe.

Proof. If a is vertical even then it can be written as G(d) where d is necessarily vertical
(odd or even)

so by lemma 3.5 we have that 3d is successal and by lemma 3.2 we have Syr(S(a)) = G(3d)
so it is necessarily vertical odd (since 3d is successal) so Syr(a) = V −1(Syr(S(a)) and
therefore a ≡ S(a)
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This behavior we can now generalize to the n, because if a is vertical even and of de-
terminant d, then the lemmas we used also provide that Syrn(Sn(a)) = G(3n · d) and
therefore Syrn(Sn(a)) will be vertical even for any even n because 3n · d will be vertical
something (even or odd, depending on what the determinant was) for any even n.

Now if a is vertical odd it can be written G(d) and d is necessarily successal because
G ◦ S = V .

Thus 3d is vertical (even or odd) and therefore Syr(S(a)) = G(3d) is vertical even.

This qe theorem is a more elaborate, and now very useful building block of our demon-
stration, because it allows to place a relation of equivalence between every other pair of
any odd branch of the binary tree, up to infinity. It is also based on the characteristics
of increasing phases of the Syracuse orbits: any number of rank n is finitely turned into
a number that has a vertical, which is either odd or even.

We should now interest ourselves with the decreasing phases of the Syracuse orbits 2, and
they only concern the glacis.

Theorem 3.7. (glacial decreasing)

Let a be a vertical even number with a glaciality of
[
n
b

]
where n is even, then a ≡ 3

n
2 (b)

Let a be a vertical even number with a glaciality of
[
m
b

]
where m is odd, then a ≡

S(3
m+1

2 (b))

Proof. if a is of glaciality
[
n
b

]
then by definition a = 2n+2b+ 1.

Then 3 · a+ 1 = 3(2n+2b+ 1) + 1) = 2n+2 · (3b) + 4.

As this expression can be divided by no more than 4, we have

Syr(a) = 2n3b+ 1, therefore the glaciality of Syr(a) is[
n− 2
3b

]
Note that if n = 2 then V −(Syr(a)) = V −(22 · (3a) + 1) = 22 · 1

4 · (3b) = 3b which is of
course an odd number. Therefore Syr(a) is vertical odd and V −(Syr(a)) = 3b thus we
have proven that a ≡ 3b.

2remember that we are still only considering odd numbers when we write ”decreasing phases”, and
still defining Syr(a) as ”the next odd in the orbit of a”
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If n = 1 then a = 23 · b + 1 so 3(a + 1) = 23 · 3b + 4 therefore Syr(a) = S(3b) and thus
a ≡ S(3b).

From this we can generalise the progression of glacis numbers. Let b be any odd number,
thus defining a glacios bottom. All ”Variety S” numbers of its glacis are written V (b ·
22k−1) or S(b ·22k) = 22k+1 · b+1 and all ”Variety V” numbers of its glacis are written
V (b · 4k) or equivalently S(b · 22k+1) = 4k+1 · b + 1. Any glacis number g of order 2k or
2k − 1 may be thus reduced to a glaciality of 0 or −1 by the following transformation:

(g − 1) ·
(

3
4

)k

+ 1 therefore we do have indeed that,

• for Variety S numbers : 22k+1 · b ·
(

3
4

)k

+ 1 = 2b · 3k + 1 = S(b · 3k)

• for Variety V numbers : 4 · 4k · b ·
(

3
4

)k

+ 1 = 4b · 3k + 1 = V (b · 3k)

As the obtaining of these equalities will fit any odd number b, we have that any glacis
number of glaciality 2k will be finitely mapped to 4b · 3k + 1 = V (b · 3k) and that any
glacis number of order 2k − 1 will be mapped to 2b · 3k + 1 = S(b · 3k).. Any glacis
number merges either directly with a power of three of its bottom or with
the successor of it.

4 General description of the Syracuse dynamic

The qe theorem allows to place an infinite amount of equivalences along the binary tree
that are the result of quaternary properties.

1 2

3 4

5 6 7 8

14 15 16131211109

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Figure 2. A representation of the intersection of the binary and the quaternary trees:
as only the quaternary operation ·4+1 really matters to the representation, we have just
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warped the binary tree so that V(a) is indeed Vertical to a. We have also not connected
the rank 1 numbers to the even ones of which they are the successors so as to make
glacis more easily visible. The bold black lines indicate qe equivalences and vertical
equivalences, and so whenever numbers are joined by a connective series of those lines,
their Collatz orbits merge. Connecting all of those equivalences together completely solves
the Syracuse problem, and as we will see in the next section, this endeavour requires the
introduction of a third dimension: that of the ternary representation of any number.

4.1 Ascending phases

The orbit of an odd number can only increase if it is of rank 2 or more. Odd branch
numbers of rank n > 2 ascend with the progression +1 · 3

2

n−1 − 1 and this allows to
compress their orbit to the next glacis.

More particularly though, if a pair is not connected by the qe equivalence, it is be-
cause the rank 1 reduction of its smallest number by Syracuse is vertical
odd. When we have a pair {a;S(a)} where a is vertical odd, what happens is that a is
mapped to Syr(V −1(a)) and S(a) is mapped to the glacis of bottom Syr(V −1(a)) and
this phenomenon, by which a pair of numbers that were related on the binary tree become
separated we call an Avalanche. Avalanches account for absolutely all of the chaoticity of
the Syracuse orbits, and whoever can perfectly predict their occurence and consequences
has cracked all of the Syracuse orbits. Needless to say, this communication doesn’t have
this ambition.

An example of Avalanche can be understood on figure 2 by observing the pair {3; 7} of
which the first Syracuse image is {5; 11} where 5 indeed is vertical odd. The avalanche
is that 5 is mapped to the image of 1, which is 1, and 11 is mapped to 17, which is in
the glacis of bottom 1. This happens to all such pairs, which we have called ”buds” in a
previous work.

The alacrious reader will not fail to notice that 17 is precisely a glacis number of Variety
V , and this is not happening by chance: if a vertical odd number a is the finite vertical
of an even number, then S(a) will be mapped as a variety V in the next glacis, and
proportionally as high as a was vertical, and if the bottom of its verticality is odd, then
S(a) will be mapped as a variety S. The easy reason for which it is so will be left for the
reader to grasp, as we do not use it in the other demonstrations of this piece.

We have also noted that any power of 9 of a vertical number is either of the series ”vertical
odd” or the series ”vertical even” and these two are parallel: one cannot obtain a vertical
odd number by applying any power of nine to a vertical even one. Thus, the destiny
of branches the determinant of which falls within the ”vertical odd” or ”vertical even”
series is quite different, and this level of precision can also help understand the Syracuse
dynamic better. Still, we shan’t use it further in this communication, even though it is
more significant than a simple curiosity.
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4.2 Descending phases

Any odd number can only decrease in Syr if it is of rank 1, and then it intersects either
the Successor or the Vertical of a power of 3 of the bottom of its glacis. Note that in so
doing, it always encounters the consequences of another qe on the branch it meets: either
the power of three of the bottom of the glacis can be proven to merge with its successor,
either it is vertical odd or it is its predecessor that is merging with it.

Here too, powers of 3 of the bottom of the glacis, just as being the case with odd branch
determinants had useful implications to elaborate more advanced theorems, can either be
of the ”vertical odd” or ”vertical even” sequences.

Numbers of even glaciality n decrease following the dynamic −1 · ( 34 )
n
2 + 1 and those of

odd glaciality m, −1 · ( 34 )
m+1

2 + 1.

Thus, whenever one can prove that an odd number merges with its triple, one
proves that it merges with its first number of even glaciality

Also, whenever one can prove that an odd number merges with the successor
of its triple, one proves that it merges with its first number of odd glaciality.

We cannot stress enough the importance of this pair of results.

5 Using the ternary tree to connect the quaternary
equivalences

5.1 Definitions

In the previous sections we have mostly identified numbers by their position in the com-
plete binary and quaternary trees over N. Using statements of the kind ”a is vertical
even” is a typical example of crossing binary and quaternary properties to identify spe-
cific characteristics of a number. We will now expand this methodology by adding the
ternary tree, which elements we will identify with the following definitions:

Definition 5.1. Ternary, Ternarity
A number b is ternary or of type B, if it can be divided by 3. Its ternarity is the
total number of times it can be divided by 3, to which we will add the information of
the non-ternary number resulting from this finite operation, thus the full ternarity of any
ternary number that can be written 3n · x where x is non ternary is

[
n
x

]
For all intent

and purpose, when we will refer to just the ”ternarity” of a B type number (as opposed
to ”full ternarity”) we will just be meaning n alone.
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Definition 5.2. 1-ternary, 1-ternarity
A number c is 1-ternary or of type C, if its base 3 representation ends with digit 1. The
number of times one can remove a consecutive end digit 1 (we call this operation C−1) is
its 1-ternarity, to which we add the information of the number resulting from it. Thus,
a number c that can be written x 1 . . . 1︸ ︷︷ ︸

n

in base 3 has a 1-ternarity of
[
n
x

]

Definition 5.3. 2-ternary, 2-ternarity
A number a is 2-ternary or of type A, if its base 3 representation ends with digit 2.
The number of consecutive times one can remove an end digit 2 (we call this operation
A−1) is its 2-ternarity, to which we add the number resulting from it. Thus, a number

a that can be written x 2 . . . 2︸ ︷︷ ︸
n

in base 3 has a 2-ternarity of
[
n
x

]

Definition 5.4. ”up”, ”down”

A number is called ”up” if its qe makes it merge with its successor. If B ≡ S(B) we call
it a Bup and respectively for A and C, Aup and Cup. If B ≡ S(B), as we necessarily
have that S(B) is of type C, we will call this C ”down” or Cdown. If a number is vertical
odd, it is ”down”, if it is vertical even, it is ”up”.

1

3

5 7

1513119

17 19 21 23 25 27 29 31

33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

65 67 12769 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125

Figure 3. All odd numbers from 20 to 27. Type A are circled in teal, B in gold and
C in purple. Numbers of a ternarity of 2 or more (numbers that can be divided by 9,
that is) are also colored in gold. To explain again the previous definitions: 27 is a Bup
and 63 is a Bdown for example. Any glacis number of glaciality above 0 is ”up”: 17
is an Aup for example, and 19 a Cdown. Though exotic, these names are absolutely
essential to the results we obtain, and their very use is a pure result of our methodology:
the ”up” and ”down” properties come from the study of the intersections of the binary
and quaternary trees, and the A,B,C ones, from the ternary. This representation is a
Romanesco (2,3,4)
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5.2 Golden Automaton

We shall now define an algorithm that can mend together infinitely many quaternary
equivalences, and actually at least almost all of them. This algorithm we call the
Golden Automaton or GA.

1. Start from the equivalence 1 ≡ 3 ≡ 5

2. Whenever a new type B number is found in the network, divide it by 3, and always
prioritize the Bups

for the first round, the only B is 3, so the GA notes that 1 ≡ 3

3. project the equivalences in the corresponding glacis
at round 1, there is only one equivalence: having that 1 merges with its triple

means it also merges with its first glacis number of the V Variety, thus giving 17 ≡ 1

4. whenever a new type A glacis number is grafter in the network, apply Syr−1 up to
a non A type3, which is then added to the network. If this generates an equivalence
of the type B ≡ S(B), prioritize it.

at round 1, this gives 17 ≡ 7. Also by the qe 7 ≡ S(15) and 15 is of type B,
but not a Bup. so it will not be prioritized by the GA. Still, we now have 3 ≡ S(3),
which will be put to use in the glacis of bottom 1

5. project the equivalence in the corresponding glacis
3 ≡ S(3) → 1 ≡ 9. 9 is ternary, and being a glacis number, it is a Bup, so it

will now prove two glacis equivalences together, namely those of 49 and 35 (each of
them bringing two Bdowns) and equivalently, 65 and 33.

6. After checking the Aups and prioritizing those of the highest 2-ternarity (they are
easy to spot, as they can be written G(B) where B is of high ternarity) check all
the Bdowns added to the network, including the ones that are the verticals of an
A type. Always prioritize the lowest numbers in any case.

7. repeat.

1

3

5 7

1513119

17 19 21 23 25 27 29 31

33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

65 67 12769 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125

1 ≡
3⇒

1 ≡
17

1 ≡ 17 ⇒
3 ≡ 7

3 ≡ 7 ⇒ 5 ≡ 9

1 ≡
9

1 ≡
9

3 ≡
9

9 ≡
19

3
≡
7

11
≡

33

45
≡

89

19
≡

39

3This operation can only be finitely repeated of course, and is decreasing
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Figure 4. The golden branches on this figure are only a subset (and precisely: the Bup
series after exploiting 3) of the equivalences the GA proves to reach them: assuming
number 3 already grafted to the network (since we start from 1 ≡ 3 ≡ 5), they are the
ones generated by only considering the Bups, and not the (many) more opportunities
offered by connecting Bdowns, which are of lesser immediate interest but of much higher
frequency and actually always yield either a new Aup or a new Bup to graft as well.

Theorem 5.1. The Golden Automaton can neither stop nor loop.

Proof. The moment a Bup is brought to its growing equivalence network, the GA can
finitely prove that a number of either type A or C merges with two consecutive glacis
numbers. Also, if the Bup is of a ternarity above 1, it will additionally prove that two
glacial type C merge with a type B bottom, for example 1 ≡ 9 means 65 ≡ 33 ≡ 1 but
also 49 ≡ 25 ≡ 3 because 9 is of ternarity 2. Exploiting the first Bup, there will always
be an Aup and Bup that will be freshly grafted to the equivalence network, either in the
descending glacis order (B;A) if the bottom is of type C, and (A;B) if it is of type A.
The more ternary the Bup, the higher-reaching the equivalence. That a Bup be brought
in the network guarantees a full new equivalence of the type x ≡ 3kx ≡ S(3k) which will
always reconnect a new Aup and a new Bup. Thus, the grafting of a new Bup to the
network always implies the grafting of another one. So it cannot stop.

Can it loop now? Any Bup the GA gets, it does by either operations G ◦G ◦ V or G ◦ V ,
and then it will also get an Aup in the process. The equivalence it obtains is then that Bup

3

merges both with G ◦G ◦ V (Bup
3 ) and G ◦ V (Bup

3 ) this progression is strictly increasing,
precisely because glacis numbers have a strictly decreasing progression in Syracuse.

Theorem 5.2. The Golden Automaton connects at least almost all orbits.

Proof. So we have an algorithm that never stops, cannot loop and that recoups an ex-
ponentially growing diversity of numbers within the ternary tree over N. Also, all the
ascending Syracuse orbits lead to numbers that can be written G(B), and all the de-
scending ones, to numbers that are either B or S(B). Remember too, that, regarding the
title of this communication, whenever an orbit is grafted by the GA, it is never almost
bounded, but bounded, period.

Besides, we have not at all fully exploited all the Bdown the GA grafts to its equivalence
network, and which new equivalences they also prove. Even though each of them is
initially less powerful than the grafting a Bup (ie. in its first round of exploitation, a
freshly grafted Bdown either offers the grafting of a new Aup or that of a new Bup) each
round of running the GA brings proportionally much more of them, and this for simple
reasons kind

• whenever the GA grafts a number of glaciality above 2, it also grafts its next glacial
image, which is necessarily of type C. For example, as we have already seen, grafting
65 and 33 implies the grafting of the type C 49 and 25 (their next glacial images)
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and therefore that of the Bdowns 99 and 51 which are their successors, which which
they merge by virtue of the qe.

• whenever the GA grafts a type A number, each application of A−1 produces either
another A type which vertical is then a Bdown, or if it is of a 2-ternarity of 1,
directly either a Cup or a Bup. As any glacial type A can be written G(B), the
ternarity of its determinant gives the number of times A−1 can be applied (and so
how many new Bdowns it gives, minus one). For example: 17 being the glacial
image of 7, and G(9), A−1 can be applied only twice to it, so only one type A
number is also grafted (11 that is) thus grafting V (11) which is 45.

Thus, Bdown that is grafted to the ternary tree (along with its third) always initiates
the adding at least of an endless other series of Bdowns and of Bups too, this also, for
elementary algebraic reasons:

• Any freshly grafted Bdown allows the grafting of either a glacis A or a glacis B
depending on whether this Bdown can be written 3n · c (then it grafts an Aup) or
3n · a (then it grafts a Bup).

• if an Aup is thus grafted, it finitely connects either a Bup or a Cup and therefore a
Bdown (as in what happens when connecting the pair 7 ≡ 15), because this Aup, in
base 3, can only be written either b 2 . . . 2︸ ︷︷ ︸

n

(in which case it finitely maps to a Bup)

or c 2 . . . 2︸ ︷︷ ︸
n

(in which case it finitely maps to a Cup). Thus the play again through

the Bdown series is guaranteed for the Golden Automaton.

• if it’s a Bup, it now grafts both a glacis A and a glacis B, the play again is also
guaranteed.

Thus the GA does not stop, both through the grafting series that started with the first
Bup (namely 9, then 33) but also to the one that started through the many Bdowns
after it (15, 21, 45...). The existence of the qe also proves that the only problems that
need to be solved to fully demonstrate that all Collatz orbits are bounded are the A-
A avalanches, that is, the demonstration that all glacis numbers of type A merge with
their glacis Bottom, which would allow to prove that all the numbers of any odd branch
merge. The Golden Automaton not only guarantees that an infinite amount of those A-A
avalanches are solved but also that, for the progression of it to 3n, when n goes to infinity,
at least almost all are solved.
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Figure 5. Note that the development of the Golden Automaton mimics the
one of the famous ”Collatz Seaweed”, which is of course no accident. This more
complete description of the Automaton, grafting the qe together as it progresses from
1 ≡ 3 ≡ 5, goes all the way to grafting 127 and 31. Each branch indicates which number
generates it, for example 9 is grafted to 5 because 7 is grafted to 3, and 9 being a Bup it
grafts 33 and 65. Never before has such a large proportion of any odd numbers4

up to to 2n + 5 been demonstrated to finitely merge with 1, and with an
algorithm that has of course nothing to do with the brute force computation
of each orbits, in that not only are each of its steps finite and predictable, but
the demonstrating that all numbers from 20 to 2n + 5 converge has not the
algorithmic complexity of calculating each single orbits. In this figure are shown
the grafting of 31 and 127, thus, even though all the consequences of this grafting are not
represented, proving the merging of all numbers up to 261.

The most problematic numbers at any stage 2n remain the Mersenne numbers
and of course, the ones leading to them, yet the Golden Automaton grafts them
very easily. All the problematic Mersennes are Cups like 31, 127 and the like. Since the
determinant of the Mersenne branch is 1, at any level of the binary tree, their first glacial
image will always be written G(3n). For example, the first forward glacial image of 31
is G(81) = 161. This is the reason 31, for example, cannot cycle when reaching its first
glacis: being of high rank, it has to be written as the glacial of a proportionately high
power of 3 of its determinant (1), which just can never be a vertical of 1 (no power of 3
of 1 can be written V n(1)). Also, since multiplying a number of a high verticality by 3
always gives a number of proportionate successality, it means that the precursors of the
Mersenne Cups will always be written G(V n(1)), for example the precursor of 7 is 9 and
that of 31 is G(21) = 41. Logically, the precursor of 127 is G(85) = 169, that of 511 is

4because it is easy to prove that if all numbers up to 2n − 1 converge then so do all odds until at least
2n + 5. Indeed, 2n + 1 being glacial, always have a smaller number than 2n − 1 in its orbit, from n=4
onward, 2n + 3 is always the successal of a glacial and 2n + 5 is always a vertical odd number
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G(341) = 611.

Note that it is equally easy to demonstrate that the precursors of the ”Anti-Mersenne” of
type A, that is, the type A numbers that can be written 2n + 1 or equivalently the type
A numbers of the glacis of bottom 1, can always be written S(V n(1)): 11 leads to 17, 43
leads to 65, 171 leads to 257 etc.

As 729 = 36 is of Variety S, G(729) ≡ 127 is of Variety V, which makes it much easier
to solve as it brings its solving to the problem of grafting 91 · 3 = 273, which is itself
of Variety V. This is why 127 is proven to merge with 15 before we even prove that 31
converges as well.

31 indeed is a much harder number to graft abstractly because its first glacial image is
of Variety S, meaning it requires the grafting of many more ternary numbers and their
successors to achieve its grafting, but it works nevertheless. It is easy to prove that if
the first glacial image of 31 is of Variety S, then that of 127 is of Variety V, but that of
511 will be of variety S too. Hence: that 31 is ”long” to solve means 127 is ”short”, and
thus 511 is ”long” but 2047 is ”short”. 31 was ”long” also because 7 was ”short”: 9 is of
variety S, hence the first glacial image of 7 is of variety V, and easy to graft back to 1.

One can very easily infer from Figure 5 that with the infinity of avalanches the Golden
Automaton solves, including those of the dreaded Mersenne numbers, at least almost
all orbits attain, not almost bounded but bounded values, period. The emphasis on at
least means it could be proven, through more abstract methods, that no Collatz Orbit
can escape a finite development of the Golden Automaton, a statement this article will
leave as a conjecture for now.

Conjecture 5.3. For any Collatz orbit there is an arbitrarily long, but finite, development
of the Golden Automaton that grafts it back to 1.

6 Solving Syracuse

6.1 Fundamental rules of the Golden Automaton

To summarize, the Golden Automaton may be defined as the following set of formal
arithmetic rules, which we may call The Golden Rules. They apply everywhere on 2N+
1 but the Golden Automaton is defined as their application from number 3 onward. We
shall call their application from any larger number n onward, not a priori proven to merge
with 1, a Silver Automaton from n. As the reader has certainly understood
already, our strategy consists of proving that the Golden Automaton intersects
any Silver Automaton.

1. ∀x odd, V (x) ≡ (x)

2. ∀x, k odd, SkV (x) ≡ Sk+1V (x) and ∀x, k even, SkV (x) ≡ Sk+1V (x)
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3. ∀n, y ∈ N2, ∀x odd non B, 3nx ≡ y ⇒
n∧

i=1

(V (4i3n−ix)) ∧ S(V (4i3n−ix)) ≡ y

4. ∀n, y ∈ N2 , ∀x odd non B, S(3nx) ≡ y ⇒
n∧

i=1

(S(4i3n−ix) ∧ S2(4i3n−ix)) ≡ y

5. ∀n ∈ N, ∀y ∈ N, ∀x odd non B where 3nx is of rank 1, a ≡ y, a = G(3nx) ⇒
n∧

i=0

(Si(G(3n−ix)) ∧ Si+1(G(3n−ix))) ≡ y

Examples Let us proceed with numbers 3 and 21

3 = 3 · 1 therefore by rule 3 we have 3 ≡ 17

by rules 1 and 2 we now have 3 ≡ 69 = 3 · 23 and 3 ≡ 141 = 3 · 47

also, 17 = G(32 · 1) so by rule 5 and rule 1 we have 3 ≡ 45 ≡ 93 ≡ 7 ≡ 15 and by rule
4 we have 7 ≡ 9 so starting by 3 only we have already proven the convergence of all odd
numbers up to 31 with the exception of 27 and 31, but we already have by rules 4 and
5 that 31 ≡ 27 and we will also show that the Golden Automaton finitely proves that
15 ≡ 31

We have 21 = V 2(1) = 3 · 7 so rules 1, 2 and 3 give us that 113, 453, 227 and 909
converge while rules 5 and 2 further demonstrate the convergence of 75 and 151 = S(75)
and we keep going...

So any number than can be written 3na or S(3nc) solves a glacis B number and any
number that can be written 3nc or S(3na) proves a glacis A number.

In turn, any glacis A number, which can always be written G(3nx) proves a cup or a bup,
and on the way, strictly more than 2n type B numbers as well

We will call combining the fundamental rules of the Golden automaton ”Romanesco
Arithmetic” and it may be seen, interestingly, as a particular epistemological
extension of modular arithmetic.

Practicing Romanesco Arithmetic on number 15 for example finitely gives us numbers 31
and 27. Though the development of the Golden Automaton is branching, as each B type
number that is vertical even provides us with both an A type and a B type number, we
may follow only the pathway of type A glacis numbers to define a single non-branching
arrow, which we may call ”pure A”. The latter leads us straight to 31, solving a great
deal of other numbers on the way.

15 ≡ 81 glacial type B (the only one, as we follow a ”pure A” arrow from here)
81 ≡ 1025 glacial type A
1025 ≡ 303 branch Bup
303 ≡ 809 glacial type A
809 ≡ 159 branch Bup
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159 ≡ 425 glacial type A
425 ≡ 283 branch Cup
283 ≡ 377 glacial type A
377 ≡ 111 branch Bup
111 ≡ 593 glacial type A
593 ≡ 175 branch Cup
175 ≡ 233 glacial type A
233 ≡ 103 branch Cup
103 ≡ 137 glacial type A
137 ≡ 91 branch Cup
91 ≡ 161 glacial type A
161 ≡ 31 branch Cup
31 ≡ 41 glacial type A
41 ≡ 27 branch Bup

Again, it is in no way a problem, but rather a powerful property of the Golden Automaton
that this particular segment of the infinite series of arrows (each being a quiver branch)
already cover 19 steps (and actually more than that) because each of them is branching
into other solutions. Simply put, any type A number in a glacis solves a Cup or a Bup,
which in turn brings either directly another glacial type A or a glacial type B giving itself
another glacial type B and a glacial type A.

The Golden Automaton thus generates an infinite quiver whose branches are infinite
collections of arrows. Importantly, the rules of the Golden Automaton ensure that the set
of its quiver’s branches has a cardinality strictly above 2N: intuitively, because it wraps
itself diagonally around Romanesco (2,3,4) and because it has more branching points
than the complete binary tree over N, which has R branches already. There are more
branches of the Golden Quiver than there are real numbers. This may also
be proven easily by considering that each branch of the binary tree over N generates N
unique vertical series, each composed of N many numbers,1/3 of them (the B) being the
initial of a full (infinite) ternary tree. The Golden Automaton is a diagonal Quiver
traversal of the complete binary tree over N with a non-uniform branching
factor of at least 3 at every node. It is not a simple traversal sequence (e.g. the
Kepler a.k.a Calkin-Wilf sequence) it is an infinite set of infinite trees, of which each
single infinite branch can be mapped to one and only one of all the possible functions
from R to R.

Now note that the only problems on the way of solving Syracuse have always been Cups
and Bups, because by induction, whoever could prove that any Cup or Bup has a lower
number than itself in its orbit solves Syracuse. Furthermore, any Cup or Bup finitely
maps to a Glacial A, therefore any glacial A that is grafted by the Golden Automaton
solves a Cup (like 31) or a Bup (like 27). Besides, any Cup or Bup is finitely mapped to
another Cup or Bup, because any glacial A is finitely mapped to either a B or a C type
number by glacial decreasing.

The outline of our proof will consist of demonstrating that the Golden Quiver solves
too many glacial A numbers - both denssely and diagonally - so too many Cups and
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Bups to allow for any non-converging trajectory to exist over N. Siply put, the Golden
Quiver branches too much and covers too much, and since any supposedly non-converging
trajectory will generate its own ”Silver Quiver”, our strategy consists of demonstrating
that the footprint of any such silver quiver, for any supposedly non-converging Cup or
Bup, grows too much not to intersect the Golden Quiver.

In turn the sets of Cups and Bups can be measured very easily in terms of its density
over N:

7 is the first Cup, 7+12 is a Cdown, 7+24 is a Cup, 7+36 is a Cup, 7+48 is a Cdown, etc.
If we study the number crystal of C types of rank >1 (i.e. exactly this slice of Romanesco
(2,3,4)) it gives

7 (U) - 19 (D) - 31 (U) - 43 (U) - 55 (D) - 67 (D) - 79 (D) - 91 (U) - 103 (U) - 115 (D) -
127 (D) - 139 (U) - 151 (D) - 163 (D) - 175 (U) - 187 (U) - 199 (U) - 211 (D) - 223 (D) ...

which is an infinite braid 5 made of infinitely many strands of the C of rank>1, with
each same-rank strand of the braid following the rule U → D → U . As the same goes with
the number crystal of B type of rank>1, simply put, for any 7 consecutive odd numbers
in N, a maximum of 3 are Cups and Bups and a minimum of 1 is, and as the binary tree
develops, less than 16% of odd numbers are up, half of them being of a workable rank of
2 (like 27) meaning they are finitely mapped to another ”up” of higher rank (e.g. 31 in
the case of 27).

We may actually generalize the case of 27 in a theorem, to rigorously explain what we
mean of a ”workable” rank of 2, i.e that any up of rank 2 is finitely mapped to a higher
rank:
Theorem 6.1. Second order rank theorem

let y = S(V (x)) where x is of rank n, then y is finitely mapped to (y + 5) · ( 98 )
⌊n

2 − 5

Proof. Though rather esoteric, this little theorem is actually very useful, both in method-
ology and consequences. We have already seen that a founding theorem of the Romanesco
algebra of the Syracuse problem was that any number x of rank n is finitely mapped to
(x+ 1) · ( 32 )

n − 1 which is of rank 1. In this theorem we can define the second order rank
of a ”bud” - ie. a number that can be written S(V (x)) where x is odd - as the rank of
x itself, and we can demonstrate that any such bud will finitely decrease in second order
rank and grow by increments of 9

8 by being mapped to numbers of glaciality 1, then back
to branches in a rank of 2.

For 27 we have indeed (27 + 5) · 9
8 − 5 = 31

For 59 we have (59 + 5) · 9
8 − 5 = 67

The general demonstration consists of observing that any number y = S(V (x)) where x

5Infinite braids of this kind are particularly interesting to study the Riemann Hypothesis, for example
considering the infinite braid of multiplication tables over N
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is of rank 2 or more is mapped to G2(Syr(x)) which can only be a number of glaciality
1, so it is mapped in turn to S(3 · S−1(Syr(x))) thus giving our general formula

For a geometric intuition of the process, it could be summed up as ”go to the closest
number dividable by 8 on the right of the bud” (that’s the +5) then compute one increas-
ing Syr (branch process) and one decreasing Syr (glacis process), and that’s the 9

8 , then
give your +5 back. It is essentially the same process as computing Syrn of a rank n odd
number, only second order, in that it now concerns the bud right above said number.

As we have already noted any bud that is vertical even is strictly decreasing, that is, if
a number can be written S(V 2(e)) where e is even, then it maps to a type A number of
glaciality 2, and therefore maps straight to 3 · Syr(V (e)) which is a strictly decreasing
process.

So altogether, this eliminates all the Cups and Bups of rank 2 as problematic in the
establishment of a final resolution of the Syracuse problem, so we now have at mosst 8%
of odd numbers to worry about even before the Golden Automaton is taken into account,
and actually, as we will see, much less than that.

6.2 Density and Diagonality of the Golden Quiver

Rules 3, 4 and 5 ensure that the development of the Golden Automaton over the Binary
tree is diagonal, which is absolutely essential. Finishing a proof of the Syracuse problem
consists of demonstrating it is also dense enough not to allow any trajectory it does not
capture. This would demonstrate at the same time that no cycles can exist in Syracuse
but of course, that simply all natural numbers finitely converge to 1 in this discrete
dynamical system.

As many chaoticians have observed since Lorenz, and chief among them Stuart Kauffman,
chaos can actually remain quite ”boxed” in its space phase, and this is exactly the case
of the Syracuse dynamical system, which in spite of its deterministic chaoticity exhibits
rather precise attractors within N. However, if the Syracuse orbits converge to certain
key numbers that can be beautifully visualised in the stems of the so-called ”Collatz
Seaweed”, the Golden Quiver generates strictly more branches than there are real numbers
and has therefore more branches than the complete binary tree over N. In this current,
and penultimate part of our demonstration, we will lay the foundations of this collision
analysis to prove Conjecture 5.3

The way the Golden Automaton works, any type B and type C number proven to con-
verges also provide either a Glacis A or a glacis B number, which in turn provide re-
spectively a series of new B numbers and a branch Cup or Bup (in the case of a glacis
A)
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In a previous publication (2017) we demonstrated an interesting property of the Syracuse
Dynamic we called the ”Banana-Split Theorem”

Theorem 6.2. Banana Split Theorem

Let g2 and g1 be glacis numbers of ranks 2 and 1 respectively then either

• g2 ≡ g1 (”Vanilla”)

• g2 ≡ g2−9
8 and g1 ≡ (g1 · 8) + 9 (”Banana”)

We will call the action 8x+ 9 ”Banup” and the action x−9
8 ”Bandown”

Proof. By the glacial decreasing theorem (3.7) we have g2 ≡ 3b where b is the bottom
of the glacis. Then b is either up or down. If it is up, b ≡ S(b) → g2 ≡ g1. If it is down,
S(3b) ≡ S2(3b) equivV (S2(3b)) the latter being of type C, therefore g1 ≡ Banup(g1). If
3b is down we also have either 3b = V (a) where a is of type A, or 3b = S(c) where c is of
type C, either way it implies that g2 ≡ Bandown(g2)

It is also easy to demonstrate that any banana starting from a type A (and either going
up or down) gives a type C number, and that any Banana from a type B gives another
type B

This theorem, though anecdotal in appearance is actually very useful because it will
guarantee that any trajectory merges with triple C or triple A numbers, which in turn
is a an extremely important property of the Syracuse Dynamic. Indeed, it implies useful
lemmas

Lemma 6.3. • Let 3·a = V (x) where x is odd and a of type A, then Banup(3·a) = 3·c
where c is of type C and the determinant of the branch of x is dividable by 9.

In plain English: any type A branch with a determinant dividable by 9, that is,
a branch made of numbers that have been increasing at least twice under Syracuse
has Triple A numbers above itself and triple C as any g2 numbers in its glacis

• Let V (a) where a is of type A be dividable by 9, then Banup(V (a)) is dividable by
9 but neither is V (S(a)) or Banup(V (S(a))). If V(a) is a triple B (dividable by 9)
then V(S(a)) is a triple C and Banup(V(S(a)) is a triple A. If a is of rank 2 or
more, then V (S(a) ≡ Banup(V (S(a)))

In plain English: let a Cup or Bup increase just once under Syracuse, then one
will find triple As and triple Cs it merges with.

Proof. • It is trivial to demonstrate that by the Syracuse Dynamic, the action ·3 on
any A branch gives a series of numbers that are vertical, except for the first number
of the branch, for which the triple must be successal; also, since we have tripled
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an A branch (which determinant is necessarily of type B) the determinant of the
second branch is dividable by 9. Now does Banup(3a) give a 3a number? Yes it
does 24a+9

3 = 8a+ 3 which is of type A.

• What the second case meant in plain English is that if we apply the cation ·3 on a
CB branch now, we obtain a series of B numbers that are verticals to an A branch
(again, except for the root of the CB branch). Then either these verticals are 3B
numbers, and are dividable by 9, or they are triple Cs, and that is the reason one
will find triple Cs above any A branch of which the determinant is dividable by 3
only once.

This allows us to further narrow the set of problems by formally defining it as, at most,
a certain proper subset of the set of triple Cs that are Vertical odd, or a certain proper
subset of the set of triple As that are Vertical odd. 69 is the first triple A that is vertical
odd, and the next one, 141 which it happens to be equivalent to by rules 1 and 2, is found
at a step of +72 over N, so that we now have reduced the set of problems to below 2,8%
of the odd numbers, evenly distributed of course over their set, and this without having
even used the Golden Automaton from 3 of course. We may affirm that the set of actual
problems is a proper subset of those less than 2,8% of odd numbers specifically because
any Cup or Bup of rank n will, in its trajectory, intercept as many of those
as its orbit inflates.

Furthermore, one must also note that any Triple A or Triple C also constitutes the starting
point of the grafting of infinitely many new odd numbers, so whenever a supposedly
diverging Cup or Bup expands its footprint in the set of problems (which we later call a
Syracuse Determinant) it does so exponentially. If its orbit inflates, it will intersect
other Triple As and Cs but also other Cups and Bups forward, but each of the Triple
As and Cs it intersects will themselves solve another infinite series of Cups and Bups,
backward.

From a Ramsey-theoretical approach, it would be fascinating to define not some Deter-
minant of Syracuse as we have still rather broadly done here, but an absolute Critical
Set defined as the smallest set of odd numbers - if it exists - whose solving solves Syra-
cuse. Such an endeavour is nevertheless not required at all to finish the proof, as the
Golden Automaton simply solves way too many problems, and the problems’ footprint
(quiver) simply inflate way too much if we just assume they are problems (namely, that
they dodge the Golden Automaton’s own footprint), that a collision between the Golden
Quiver and any supposedly non-connected Silver Quiver is inevitable anyway, thus prov-
ing Conjecture 5.3.

For any glacis B number we have an increasing and a decreasing pathway, which we saw
in the example 15 → 31. Any Glacis B number finitely points to a pair of A and B
glacis numbers, and, if it is dividable by 9 or more, to as many Bdown numbers as it is
dividable by 3 minus one time. We now have that only Bups and Cups of rank strictly
above 2 are problems in Syracuse, and that each time they grow they intersect twice as
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many triple As as their rank-1, plus one. Any number which orbit is supposed to escape
the Golden Quiver will form an exponentially growing Silver Quiver within the space
of Triple As. All we have to do now is to demonstrate that the Golden Rules starting
from 3 grow too many solutions to avoid any possible Silver Quiver. This can be done in
many ways but we would like to take the opportunity of this demonstration to expand
upon the concept of Romanesco Calculus. Thus, although it could be demonstrated in a
more straightforward manner, we will develop here a slightly more technical approach to
build upon the more general interest of the methods and tools we have conceived in this
article. We do not want to miss the opportunity to apply Romanesco algebra to a second
order, that is, to now map all the triple A numbers to a 2-4 Romanesco and analyse their
trajectory from this new referential. Again, this was not necessary in the first place, but
the future potential of this sort of analysis warrants breaking ground for it in this very
article already.

6.3 Romanesco analysis of the Syracuse Determinant

Romanesco analysis is a composition of rules, like Romanesco arithmetic, but on a dy-
namical system over a state space. In this final part of our proof, we demonstrate that
the diagonality and density of the Golden Quiver interdicts any Silver Quiver defined by
the property of not intersecting it.

Paramount to this demonstration is the analysis of the consequences of the Golden Rules,
and in particular Rules 3, 4 and 5 implying that

• any triple A solves a glacial Bup

• any Bup solves a glacial A and a glacial Bup

• any glacial A solves a branch Cup or a branch Bup

but also, still by those same rules 3, 4 and 5, we may focus on the case of glacial Bup
81, which we have demonstrated finitely solves Mersenne 31. Since 81 is of ternarity 4,
the Golden Rules imply it solves 2 · (4 − 2) = 4 triple Cs on its way to mapping to the
single glacial A-B pair it solves, and any triple C solves a glacial A, which solves a branch
Cup or Bup, and on its way, other triple As and triple Cs. The important part of this
final step to solving the Syracuse problem is the analysis of the geometric consequences
of action ·3 on branches and glacis

• let Gx = {g1...gn} be a glacis of bottom x, then 3 ·Gx = S(G3x) to which is added
3 · g1 = S(V (3x))

• let Bx = {x, S(x)...Sn(x)} be a branch of root x, then 3 · Bx = V (Syr(Bx)) to
which is added G(Syr(S(x))
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These consequences of the Golden Rules ensure, among others, that any supposedly es-
caping orbit would also leave an exponentially growing quiver of triple Cs and triple As
as a footprint. For example, the mere orbit of 7 also provides, among others, Triple A
483, (by banana between 241 = S−1(483) and 29 = V (7), which had to be because of
the rank of 7) but also triple A 753 and Triple C 93 by banana over 23 = S(Syr(7)) and
finally triple As 69 and 141 (over 17 = Syr2(7)) and triple C 1137 (by banana, again
inevitable from the rank of 7 , from 1137 to 141)

A further step, though unnecessary per se to solve the Syracuse problem, consists of
mapping all the triple A numbers that can be written as the vertical of an A type number
and establish the Determinant of Syracuse within this space phase that any orbit has to
intersect, also noting that any triple A provides a quiver of new solutions

69

141

213 285

357 429 501 573

1005 1077 1149933861789717645

1221 1293 1365 1437 1509 1581 1653 1725 1797 1869 1941 2013 2085 2157 2229 2301

2373 2445 2517 2589 2661 2733 2805 2877 2949 3021 3093 3165 3237 3309 3381 3453 3525 3597 3669 3741 3813 3885 3957 4029 4101 4173 4245 4317 4389 4461 4533 4605

Figure 6. Representation of a Syracuse Determinant mapped onto a 2-4 Romanesco,
made of the Triple A numbers that can be written V (a) where a is of type A. Each number
is associated with a single integer, circled in blue if even, and red if odd. For any integer
n, its associated Triple A is equal to 72n − 3. The solid black lines plot the projection
of the quaternary equivalence onto this representation. Only a subset of the Triple A
numbers that are ”vertical red” in this referential (i.e. that admit, in this representation,
a V −1 that is itself a Triple A of odd integer n ; they are displayed in darker gold and
they are +576 apart from each other in nominal value e.g. 357 + 576 = 933) actually
needs to be solved to solve the Syracuse problem and that the Golden Automaton solves
an infinity of Triple A numbers in a density that is sufficient to interdict the existence of
any other independent ”silver quiver” solves the Syracuse Problem.

Simply put; the process generating problems cannot win against the process generating
solutions, by virtue of its diagonality and the arities (plural, because they are not the same
at every node) of its nodes, which are anywhere strictly above 2, and in fact, progressive
ones indexed on the ternarity of the B nodes : taking the case of 81 as an example, we
have this number of ternarity 4 mapping to 513 (glacial B) and 1025 (glacial A) but also,
on its way, to triple A 771, triple B 1539, triple C 579, triple C 1155, triple C 867 and
triple C 435, giving a final arity of 8 to this node, which depends only of the ternarity of
81. The Golden Quiver solves problems faster than they can appear, and each presumed
problem grows a footprint that cannot escape it. Another approach to finish the proof
consists of noting that there is a bijection from the set successal Cups and Bups to the
set of glacial As, yet a proper surjection from the same set to the set of triple C numbers
(each representing another glacial A of order 2) and that while only a proper subset of
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numbers of ternarity 1 needs to be solved, numbers of ternarity strictly above 1 solve
exponentially more of those (e.g. case 81).

If any Silver Quiver is finitely intercepted by the Golden Quiver then not only cannot
there be any kind of cycle in Syracuse, but every number also finitely converges to 1.
Hence the peremptory title of this article: Syracuse is solved.

7 Conclusion

It may seem easy to quote theologian Lynn H. Hough’s ”life is a journey and not a desti-
nation” but it remains appropriate to state that this very work was a journey rather than
a mere destination to solving the Syracuse Problem. The idea of studying morphisms
of the complete binary tree over N came from discussions with Professor Solomon Fefer-
man who invited the author as Visiting Scholar of Stanford University in 2006, and the
purpose of such discussions was the Continuum Hypothesis, not the Syracuse Problem.
If HC is independent from ZFC, the author’s position was that it can only be ”solved”
by constructing an object with intermediate cardinality and demonstrating not that it
can be forced upon the imagination, like the imaginary unit i but that it can be useful
to the working mathematicien. Thus was born Romanesco Algebra, which is essentially
the tweaking of trees of various arities over N and more importantly, the study of some
of their subsets (e.g. branches, glacis...) and also sections (e.g. braids of multiplication
tables). In a similar fashion of conic sections, Romanesco sections bring about fascinating
new objects of Modular and Diophantine arithmetic

Romanesco Algebra, and the use of Romanesco structures to map numbers should not be
considered an obscure ad-hoc theory to attack - and ultimately solve - the Syracuse prob-
lem, but rather a larger epistemological contribution towards a full Diophantine Galois
Theory, that is, the identification of algebraic structures that determine whether diophan-
tine equations admit solutions or not. If studying the intersections of the complete binary,
quaternary and ternary trees over N yields simple yet very powerful results regarding the
Syracuse dynamic, as we have already pointed out this methodology could be extended to
other discrete dynamical systems, diophantine problems and to other problems involving
non-discrete environments.

7.1 The curious case of Marijn Heule

Among the few people whom the author contacted to share his early work is Marijn
Heule from Carnegie-Mellon University, to whom he thoroughly presented his original
Golden Automaton and some of its most important implications in Ramsey Theory. The
author had indeed quoted Marijn Heule, describing his ”Cube and Conquer” approach
to satisfiability as both elegant and promising to finish one of the many possible proofs
that the GA finitely proves the convergence of any orbit. Of course, Dr. Heule had a
prior interest in Collatz, which he confirmed to the author during their many exchanges,
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by email and over the phone. Yet, after asking many rather through questions about the
Golden Automaton he broke contact with the author only to announce in Qantas magazine
that he had felt suddenly quite ”lucky” (sic) about attacking the Collatz conjecture again,
and would probably yield tremendous new results on it. Some emails we shared have been
mentioned on the youtube channel of the author, they remain at the disposal of any honest
enquiry. Thus, after having thoroughly exchanged new concepts and techniques by email
with the author, starting to storytell Qantas magazine of ”luck” is just... curious shall
we say.

7.2 Testimonials

In Memoriam: Solomon Feferman (1928-2016), Alan Tower Waterman Jr. (1918-2008),
John Conway (1937-2020).

This work received the help of Krystal Désirée Okanda and the attention of Prof. Pierre
Collet. I was glad to share the beginning of this work to mathematician and youtuber
Mickaël Launay during a skype meeting from San Francisco in the summer 2016.

IThe author solemnly testifies that the 2017 article had enough material to establish this
complete proof of the Syracuse problem. However, had not some amateur mathematicians
doubted of it, the author would probably not have written these extensions of the original
theory and cannot but be grateful to them. The author salutes Sultanow et al. for the
brilliant intuition that led them to study the Syracuse Problem with their angle on graph
theory, though no form of interaction existed between the author and them before the
publishing of this article.

This article is dedicated to the author’s infinitely patient and caring Mother, to the brave
and persistent Paul Bourgine and Yves Burnod, to the playful and inspiring John Conway,
and to the equally brave and courageous heir of anti-academic Diogenes, Nassim Nicholas
Taleb.
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